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ABSTRACT

In this research paper we prove some fixed point theorems for digital images. Ege and Karaca stated
and proved Banach contraction principle for digital images. Main objective of the research article is
to present another generalization of the well known Banach contraction mapping principle for digital
images. We generalize the principle by replacing the contraction condition of Banach by a condition
that involves monotone non-decreasing function. In the second result, we use a weakly uniformly
strict digital contraction to prove the existence of unique fixed point for digital images. The basic
concepts about the digital images are mentioned. We give an important application of our fixed
point theorem to compression of digital images. Fractal image compression is one of the popular
technique for compressing a digital image. It is based on the self similarity search of the image. But
it has a major drawback of computational intensity in encoding a digital image. Computational
intensity increases the time of data transmission. In this paper a technique is proposed to bring
down the time of data transmission. In an image compression, it is a challenge to either maximize
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the image quality for a stipulated data transmission time or to minimize the data transmission
time for a given quality of an image to be transmitted. To achieve this goal, a constant contractive
factor in conventional fractal image compression is replaced by the non-linear contractive mapping.
This leads to significantly better reconstruction of image in lesser time. Finally we mention some
conclusions about our research article.

Key words: Digital image; digital metric space; fixed points; fractals; fractal image compression.
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1 Introduction

It has been said that 21st century era is of information and technology. Now a days the traditional
vocal communication is taken over by the new technology of visual communication. Some applications
inherently demand the visual dimension in their communications. Computer communications,
video conferencing, desktop multimedia publishing, video calling, broadcasting, teleconferencing
and image transferring are some examples of these applications. The obvious reason behind the
digital visual communication is that the digital image representation of the data allows the user
to easily manipulate the visual information in an useful way. So we expect some more aspects
to be added in the computer that we use today, so that it become compatible for efficient visual
communication.

Although it is undoubtedly true that an image is equivalent to thousands of words, it also demands
the management of tremendous amount of data, its storage and transmission. Thus the main
problem with the digital images is that the large number of bytes are essential to represent them.
For example a digital image of size 1920 × 1200 with 24 bits per pixel requires about 1.46 MB of
a computer memory. Transmission of the image using a 19200 bits per second modem takes 5.5
minutes. This much time consumption is off course not affordable for many applications.

However, this problem can be removed. A digital image contains a considerable quantity of
redundancy. Still image contain spatial redundancy, because neighboring pixels are correlated.
Colored image has spectral redundancy, due to correlation between different color components
(Red, Green, Blue). Video contains temporal redundancy, due to the correlation between different
frames. Redundancies, when removed from a digital product (image or video), compress its size
considerably. The purpose of the image compression is to remove these redundancies and thereby
to reduce the size of the image to represent it for the suitable application. Broadly, all the image
compression techniques are categorized as lossless and lossy. In lossless image compression, an
image is reversible and in lossy image compression techniques it is irreversible. There are many
popular image compression techniques. Some of them are

1. Predictive Coding - Different Pulse Code Modulation (DPCM) [1]
2. Transform Coding [2]
3. Vector Quantization [3]
4. Wavelets Coding [4, 5]
5. Model Based Coding [6]
6. Entropy Coding [7]
7. Fractal Image Compression

Fractal image compression falls into the lossy technique category. Fixed point theory plays an
important role in image processing and computer graphics. In this research area the main aim is
to obtain key results on digital images, that is to say key fixed point theorems to serve a particular
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purpose. Fixed point theory is a blend of several areas of mathematics like mathematical analysis,
topology and functional analysis. There are various applications of fixed point theory in computer
science, game theory, engineering and image processing. In recent years, there have been many
developments in digital topology. Ege and Karaca [8] constructed Lefschetz fixed point theory
for digital images and studied the fixed point properties of digital images. Ege and Karaca [9]
gave relative and reduced Lefschetz fixed point theorems for digital images. They also calculated
degree of the antipodal map for sphere-like digital images using fixed point properties. Ege and
Karaca [10] proved Banach fixed point theorem for digital images and gave an application to image
processing. Kumari Jyoti et.al [11] also proved many useful results in digital images and presented
some applications.

In the next section, we give some necessary ideas about digital images. In section 3, we present
generalization of Banach fixed point theorem for digital images. We also explore the technique of
fractal image compression in detail and present an application of our theorem in the last section.

2 Preliminary Notes

Definition 2.1. Let Z be the set of all integers and let n be a positive integer. Define the set Zn as
follows:

Zn = {(x1, x2. · · · , xn)/xi ∈ Z, 1 ≤ i ≤ n}

Zn is also called the set of all lattice points in the n dimensional Euclidean space.

Definition 2.2. [12] Consider any two distinct points p = (p1, p2, · · · , pn) and q = (q1, q2, · · · , qn)
in Zn. Let m be a positive integer such that 1 ≤ m ≤ n. We say that the two points p and q are
km-adjacent in Zn if there are at most m indices i such that |pi − qi| = 1 and for all other indices
j such that |pj − qj | ̸= 1, we have pj = qj .

Example 2.3. [10] Consider Z. Two points p and q in Z are k1-adjacent if |p−q| = 1. Since there are
two points that are k1-adjacent to a given point in Z, this adjacency relation is given by 2-adjacency.

Figure 1: 2-adjacency in Z

Consider Z2. Then the points p = (2, 3) and q1 = (3, 3) are k1-adjacent in Z2. The other points
in Z2 that are k1-adjacent to p = (2, 3) are q2 = (1, 3), q3 = (2, 4) and q4 = (2, 2). As there are
four points q1, q2, q3, q4 that are k1-adjacent to p, we write this adjacency relation as 4-adjacency
relation. With this terminology, the points p and q1 are 4-adjacent, the points p and q2 are 4-
adjacent and so on. Similarly we observe that q1, q2, q3, q4, q5 = (1, 2), q6 = (3, 4), q7 = (3, 2) and
q8 = (1, 4) are k2-adjacent to p = (2, 3). As there are 8 points q1, q2, · · · , q8 that are k2-adjacent
to p, this adjacency relation is written as 8-adjacency relation in Z2. With this terminology, the
points p and the points q1, q2, · · · q8 are 8-adjacent.
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Fig. 2. 4-adjacency in Z2
Fig. 3. 8-adjacency in Z2

In general klrepresents the number of points that are kl -adjacent to a given point p.

Example 2.4. Consider Z3. Two points p and q in Z3 are k3-adjacent if they are distinct and differ
by at most 1 in each coordinate. Since there are 26 points q that are k3-adjacent to a given point p,
this adjacency relation is written as 26-adjacency relation. Similarly two points p and q in Z3 are
k2-adjacent if they are distinct and differ by at most 1 in at most two of their coordinates. This
adjacency relation is denoted by 18-adjacency relation. Finally, two points in Z3 are k1-adjacent
if they are distinct and differ by at most 1 in exactly one coordinate. This adjacency relation is
denoted by 6-adjacency relation.

Remark 2.5. Some other adjacency relations are discussed in [13].

Definition 2.6. [10] A digital image is an ordered pair (X,κ), where X is a finite subset of Zn for
some positive integer n and κ is an adjacency relation for the members of X.

The following are the basic notions in digital images.

Definition 2.7. [12] A κ-neighbour of a point p ∈ (X,κ) is a point of X that is κ-adjacent to p,
where κ ∈ {2, 4, 6, 8, 18, 26} and X ⊂ Zn, n = 1, 2, 3.

Definition 2.8. [10] The set Nκ(p) = {q / q is κ− neighbour of p} is called the κ-neighbourhood
of p.

Definition 2.9. [14] A digital interval is defined by [a, b]Z = {z ∈ Z/a ≤ z ≤ b}, where a, b ∈ Z and
a < b.

Definition 2.10. [13] A digital image (X,κ) is κ-connected if and only if for every pair of different
points x, y ∈ X, there is a set {x0, x1, x2, · · · , xr} of points of digital image (X,κ) such that x = x0,
y = xr and xi and xi+1 are κ-neighbours, where i = 0, 1, 2, · · · , r − 1.

Definition 2.11. [12] Let (X,κ0) ⊂ Zm and (Y, κ1) ⊂ Zn be a digital images and T : X → Y be a
function. If for every κ0-connected subset A of X, T (A) is a κ1-connected subset of Y , then T is
said to be (κ0, κ1)-continuous.

Definition 2.12. [15] If in the above definition 2.11, T is (κ0, κ1)-continuous, bijective and T−1 is
(κ1, κ0)-continuous, then T is called (κ0, κ1)-isomorphism. We denote it by X ∼=(κ0,κ1) Y .

Definition 2.13. A point x ∈ (X, d, κ) is called a fixed point of the mapping T : X → X if Tx = x.
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Let (X,κ) be a digital image. We say that the digital image (X,κ) has the fixed point property
[10] if every (κ, κ)-continuous map T : (X,κ) → (X,κ) has a fixed point.

Definition 2.14. [10] Let (X,κ) ⊂ Zn be a digital image. Define a function d : X ×X → [0,∞) by,

d(p, q) =
[ n∑

i=1

(pi − qi)
2
] 1

2
(2.1)

Then we have the following properties satisfied by d for all x, y, z ∈ X.
1. d(x, y) ≥ 0 and d(x, y) = 0 ⇔ x = y,
2. d(x, y) = d(y, x),
3. d(x, y) ≤ d(x, z) + d(z, y).

The digital image (X,κ) together with the function d is called a digital metric space with κ-
adjacency. It is denoted by (X, d, κ).

Definition 2.15. [10] A sequence {xn}∞n=1 of points of a digital metric space (X, d, κ) is a Cauchy
sequence if for all ϵ > 0, there exists N ∈ Z+ such that for all m,n > N , we have d(xm, xn) < ϵ.

Definition 2.16. [10] A sequence {xn}∞n=1 of points in a digital metric space (X, d, κ) converge to a
limit L ∈ X if for all ϵ > 0, there exists N ∈ Z+ such that for all n > N , we have d(xn, L) < ϵ.

Definition 2.17. [10] A digital metric space (X, d, κ) is said to be a complete digital metric space if
every Cauchy sequence {xn}∞n=1 of points of (X, d, κ) converge to a point L of (X, d, κ).

Definition 2.18. [10] Let (X, d, κ) be a digital metric space. A function T : (X, d, κ) → (X, d, κ) is
called right continuous if lim

x→a+
Tx = Ta, where a ∈ X.

Definition 2.19. [10] Let (X, d, κ) be any digital metric space and T : (X, d, κ) → (X, d, κ) be a
digital self map. If there exists λ ∈ (0, 1) such that for all x, y ∈ X, d(Tx, Ty) ≤ λd(x, y), then T
is called a digital contraction map. Also the constant λ is called a contractive factor.

Definition 2.20. Let (X, d, κ) be a digital metric space. A self map T : (X, d, κ) → (X, d, κ) is called
a strict digital contraction if for all x, y ∈ X,x ̸= y, d(Tx, Ty) < d(x, y).

Definition 2.21. Let (X, d, κ) be a digital metric space. A self map T : (X, d, κ) → (X, d, κ) is
called a weakly uniformly strict digital contraction if given ϵ > 0, there exists δ > 0 such that
ϵ ≤ d(x, y) < ϵ+ δ implies d(Tx, Ty) < ϵ for all x, y ∈ X.

Many of the basic theorems in metric fixed point theory are extended to digital metric space. We
mention some of the important ones. Brouwer’s fixed point theorem in one dimension for digital
images is as follows:

Theorem 2.22. [10] Every (2, 2)-continuous function T : ([0, 1]Z, d, 2) → ([0, 1]Z, d, 2) has a fixed
point, where d(x, y) = |x− y| for all x, y ∈ [0, 1]Z.

Brouwer fixed point theorem in two dimensions is stated as follows:
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Theorem 2.23. Let X = {(0, 0), (1, 0), (0, 1), (1, 1)} ⊂ Z2 be a digital image with 4-adjacency.
Then every (4, 4)-continuous function T : (X, d, 4) → (X, d, 4) has a fixed point, where d(x, y) =√

(x1 − y1)2 + (x2 − y2)2 for all x = (x1, x2), y = (y1, y2) ∈ X.

Ege and Karaca [10] formulated and proved the Banach contraction mapping principle for digital
images in 2015 as follows:

Theorem 2.24. [10] Let (X, d, κ) be a complete digital metric space. Let T : (X, d, κ) → (X, d, κ)
be a digital contraction map. Then T has unique fixed point, that is there exists a unique point
z ∈ X such that Tz = z.

Ege and Karaca [10] further generalized the above theorem as stated below. We observe that if
the function ψ(t) is taken as ψ(t) = λt, where λ ∈ [0, 1), we get the Banach contraction mapping
principle as stated in theorem 2.24.

Theorem 2.25. [10] Let (X, d, κ) be a complete digital metric space and let T : (X, d, κ) → (X, d, κ)
be a digital self map. Assume that there exists a right continuous real function ψ : [0, v] → [0, v],
where v is sufficiently large real number such that ψ(a) < a if a > 0 and let T satisfies d(Tx1, Tx2) ≤
ψ(d(x1, x2)) for all x1, x2 ∈ (X, d, κ). Then T has a unique fixed point z ∈ (X, d, κ) and the sequence
{Tnx}∞n=1 converge to z for every x ∈ X.

Recently Kumari Jyoti and Asha Rani[11] presented an application of fixed point theory of digital
metric space in image processing. They have proved that expansive mappings on complete digital
metric space have a fixed point.

Theorem 2.26. [11] Let T : (X, d, κ) → (X, d, κ) be a mapping on a complete digital metric space
X. Let Tbe onto and satisfy

d(Tx, Ty) ≥ λd(x, y)

for all x, y ∈ Xand λ > 1. Then T has a fixed point in X.

Remark 2.27. [11] The mapping T in the above theorem can be replaced by a bijective mapping.

The condition on the mapping T in the above theorem 2.26 is replaced by another suitable condition
and the following results are obtained.

Theorem 2.28. [11] Let (X, d, , κ) be a complete digital self map which is continuous and onto on
X. Let T satisfy the condition

d(Tx, Ty) ≥ λµ

where λ > 1, and

µ = µ(x, y) ∈
{
d(x, y), d(x,Tx)+d(y,Ty)

2
, d(x,Ty)+d(y,Tx)

2

}
then T has a fixed point.

Remark 2.29. [11] It has been proved that µ in the above theorem may be replaced by

µ = µ(x, y) ∈
{
d(x, y), d(x,Tx)+d(y,Ty)

2
, d(x, Ty), d(y, Tx)

}
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3 Main Results

In the following theorem we replace the continuity condition on ψ in the theorem 2.25 by another
suitable condition.

Theorem 3.1. Let (X, d, κ) be a complete digital metric space and suppose that T : (X, d, κ) →
(X, d, κ) satisfies d(Tx, Ty) ≤ ψ(d(x, y)) for all x, y ∈ X, where ψ : [0,∞) → [0,∞) is monotone
nondecreasing and satisfy lim

n→∞
ψn(t) = 0 for all t > 0. Then T has a unique fixed point in (X, d, κ).

Proof. Let x0 be an arbitrary but fixed element in (X, d, κ). Define a sequence of iterates {xn}∞n=1

in X by
x1 = Tx0, x2 = Tx1, x3 = Tx2, · · · , xn = Txn−1 · · · . Note that,

0 ≤ d(xn+1, xn) = d(Txn, Txn−1)

≤ ψ(d(xn, xn−1))

= ψ(d(Txn−1, Txn−2))

≤ ψ(ψ(d(xn−1, xn−2)))

= ψ2(d(xn−1, xn−2))

Continuing in this way we get

0 ≤ d(xn+1, xn) ≤ ψn(d(x1, x0))

Thus

0 ≤ lim sup
n→∞

d(xn+1, xn) ≤ lim sup
n→∞

ψn(d(x1, x0)) = 0

Hence

lim
n→∞

d(xn+1, xn) = 0

We now show that the sequence {xn}∞n=1 is a Cauchy sequence. Also note that for any ϵ > 0,
ψ(ϵ) < ϵ. And since

lim
n→∞

d(xn+1, xn) = 0,

so for ϵ > 0, we can choose n such that d(xn+1, xn) ≤ ϵ − ψ(ϵ). Now define the set S = {x ∈
X/d(x, xn) < ϵ}. Then for any y ∈ S, we have

d(Ty, xn) ≤ d(Ty, Txn) + d(Txn, xn)

≤ ψ(d(y, xn)) + d(xn+1, xn)

≤ ψ(ϵ) + ϵ− ψ(ϵ)

= ϵ

Thus Ty ∈ S. Hence T (S) ⊂ S. Therefore d(xm, xn) ≤ ϵ for all m ≥ n. Hence the sequence
{xn}∞n=1 is a Cauchy sequence in X. Since (X, d, κ) is digital complete metric space, there is a limit
z of {xn}∞n=1 in (X, d, κ). Now we observe that the function T is (κ, κ)-continuous. If a ∈ X and
ϵ > 0, then let δ = ϵ. Thus if d(a, b) < δ, we have

d(Ta, Tb) ≤ ψ(d(a, b))

< d(a, b)

< ϵ

24



Dolhare and Nalawade; AJOMCOR, 25(1): 18-37, 2018

Thus T is (κ, κ)-continuous function. From the (κ, κ)-continuity of T we get

z = lim
n→∞

xn = lim
n→∞

Txn−1 = T
[

lim
n→∞

xn−1

]
= Tz

Therefore, T has a fixed point z.

Uniqueness- Assume that u, v ∈ X are fixed points of T . Then we have

d(u, v) = d(Tu, Tv) ≤ ψ((d(u, v))) < d(u, v)

This imply d(u, v) = 0 and hence u = v.

Remark 3.2. If we take ψ(t) = λt in the theorem 3.1, where λ ∈ (0, 1), we get the Banach contraction
principle. Thus the theorem 3.1 is a generalization of Banach contraction mapping principle.

In the following theorem we use the weakly uniformly strict digital contraction to prove the existence
of unique fixed point theorem for digital images.

Theorem 3.3. Let (X, d, κ) be a complete digital metric space and T : (X, d, κ) → (X, d, κ) be a
weakly uniformly strict digital contraction mapping. Then T has a unique fixed point z. Moreover,
for any x ∈ X, lim

n→∞
Tnx = z.

Proof. We first observe that the weakly uniformly strict digital contraction imply the strict digital
contraction. So let x, y ∈ X be such that x ̸= y. Then d(x, y) > 0. Let ϵ = d(x, y) > 0.
Then by the condition of weakly uniformly strict digital contraction, there exists a δ > 0 such
that ϵ ≤ d(x, y) < ϵ + δ implies d(Tx, Ty) < ϵ that is d(Tx, Ty) < d(x, y). We now prove that
T is (κ, κ)-continuous. Let a ∈ X and let ϵ > 0. Let δ = ϵ. Then if d(a, b) < δ, we have
d(Ta, Tb) < d(a, b) < δ = ϵ. Thus given ϵ > 0, there exists a δ > 0 such that d(a, b) < δ implies
d(Ta, Tb) < ϵ. Hence the mapping T is (κ, κ)-continuous. Next we show that if a fixed point of T
exists then it is unique. Let a, b ∈ X be fixed points of T . That is Ta = a and Tb = b. Then we
see by condition of strict digital contraction that, if a ̸= b, then d(Ta, Tb) = d(a, b) < d(a, b). Thus
d(a, b) = 0 and hence a = b. Next we proceed to show that the sequence {xn}∞n=1 = {Tnx}∞n=1 is
a Cauchy sequence for every x ∈ X. Consider the sequence {un}∞n=1 = {d(xn, xn+1)}∞n=1. Since T
satisfy the condition of strict digital contraction, we have

d(xn, xn+1) = d(Tnx, Tn+1x)

= d(T (Tn−1x), T (Tnx))

< d(Tn−1x, Tnx)

= d(xn−1, xn)

∴ d(xn, xn+1) < d(xn−1, xn)

Thus the sequence {un}∞n=1 = {d(xn, xn+1)}∞n=1 is decreasing sequence. It is also bounded below
(by 0). Hence it is a convergent sequence. Let lim

n→∞
un = L. If L > 0 then letting ϵ = L > 0,

by the condition of weakly uniformly strict digital contraction, there exists a δ > 0, such that
L ≤ d(xn, xn+1) < L + δ implies d(xn+1, xn+2) < L. Then for all m > n + 1, n + 2, we have
d(xm, xm+1) < L (since the sequence {un}∞n=1 is decreasing sequence). But then lim

n→∞
un < L.

This is a contradiction. Therefore lim
n→∞

d(xn, xn+1) = L = 0. Now we prove that the sequence

{xn}∞n=1 = {Tnx}∞n=1 is a Cauchy sequence for all x ∈ X. This we show by contradiction method.
So let us assume that {xn}∞n=1 = {Tnx}∞n=1 is not a Cauchy sequence for some x ∈ X. Then there
exists 2ϵ > 0 such that

lim sup
n→∞

d(xm, xn) > 2ϵ
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By hypothesis, there exists δ > 0 such that ϵ ≤ d(x, y) < ϵ+δ implies d(Tx, Ty) < ϵ. This condition
is true even if we replace δ by ∆ = min(δ, ϵ). Since

lim
n→∞

d(xn, xn+1) = 0,

we can find M such that d(xM , xM+1) <
∆
3
. Choose m,n > M so that d(xm, xn) > 2ϵ. For

m ≤ j ≤ n, we have

|d(xm, xj)− d(xm, xj+1)| ≤ d(xj , xj+1) <
∆

3

This implies that there exists m ≤ j ≤ n with

ϵ+
2∆

3
< d(xm, xj) < ϵ+∆

However, for all m and j,

d(xm, xj) ≤ d(xm, xm+1) + d(xm+1, xj+1) + d(xj+1, xj)

∴ d(xm, xj) ≤ d(xm, xm+1) + ϵ+ d(xj , xj+1)

<
∆

3
+ ϵ+

∆

3

= ϵ+
2∆

3

This is a contradiction to the fact that ϵ + 2∆
3
< d(xm, xj) < ϵ +∆. Hence {xn}∞n=1 = {Tnx}∞n=1

must be Cauchy sequence for all x ∈ X. Since (X, d, κ) is a complete digital metric space, there
exists a point zx such that

lim
n→∞

xn = lim
n→∞

Tnx = zx

for all x ∈ X. Since T is (κ, κ)-continuous, we have

Tzx = T
(
lim

n→∞
Tnx

)
= lim

n→∞
Tn+1x = zx.

Thus zx is a fixed point of T . As we have already observed that the fixed point is unique, we
conclude that all the zx are same. Hence the theorem is proved

4 An Application of Fixed Point Theorems to Digital
Images

In this section we discuss the application of fixed point theorems that we have proved in the last
section. We first recall that the theorem (3.1) uses the function ψ : (0,∞) → (0,∞), which is
monotone non-decreasing and satisfy lim

n→∞
ψn(t) = 0 for all t > 0. Note that function ψ(t) may be

some non-linear function.

Fractal geometry has attracted the attention of many Mathematicians. Mandelbrot first coined the
term fractal. Roughly a fractal is a geometric shape, every part of which is a reduced copy of the
whole. The following are examples of fractals.
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Fig. 4. Madelbrot Set Fig. 5. Sierpinski Triangle

Fig. 6. Koch Snowflake Fig. 7.Peano Curve

Many real world objects such as coastlines, mountains, trees, clouds are approximated by using
fractals. Mandelbrot’s book The Fractal Geometry of Nature [16] attracted a wide range of
attention.

Hutchinson [17] initiated the theory of iterated function system (IFS). Barnsley first recognized the
potential of the fractals for the image compression and applied the theory of IFS. Barnsley published
his book Fractals Everywhere [18]. He also published a paper on fractal image compression [19].
This research activity attracted many researchers in applied mathematics and computers towards
the fractals.

The original image is segmented into parts such that each part is nearly same as a reduced copy of
the original image. The union of all the segments is then close enough to the original image. Thus
the images with global self similarity are encoded with extreme efficiency [20, 21, 22]. Unfortunately,
a general image is not always globally self similar. In such images, self similarity exists only locally
amongst different small parts of it. See the following image.
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Figure 8: Self Similarity in the Image of Lenna

It has been observed that all the images in nature contain a considerable amount of affine redundancy.
The affine redundancy means, large segments of the image look like the small segments of the same
image. Large segments are known as domain blocks whereas small segments as range blocks.
We can find an affine transformation (a combination of rotation, reflection, scaling and shifting
transformation) that transforms a domain block to the suitable range block. The parameters of
the transformation constitutes a fractal code. Thus a range block is approximated by applying an
affine transformation on suitably chosen domain block. Since the mappings reduces the size of the
domain block, it is a contractive mapping. Fractal image compression works as follows:

1. The image is partitioned into non-overlapping range blocks. Generally, the partition of an
image may have any arbitrary shape (square, rectangles, triangles, quadrilaterals or any polygon
[23, 24, 25]).

2. The same image is partitioned into overlapping domain blocks. Domain blocks are larger in size
than the range blocks in order to maintain contractive condition.

3. Finally the image is encoded by using a suitable affine transformation which maps a domain
block to a best fitted range block.

4. To achieve the decompression, exactly opposite is done. Inverse affine transform is applied to
recover the image. Usually 8 to 9 inverse iterations are applied on the encoded image to decode
the image. The iteration starts with any arbitrary image. Successive application of the affine map
gives the sequence of images that ultimately converge to a fixed image (by fixed point theorem of
Banach).

Thus the contractive mappings and fixed point theorem is at the core of the fractal image compression.
Important aspect of the fractal image decoding is resolution independence. That means we may
compress a 128× 128 image, and decompress it to any size, say 64× 64 or 256× 256. Fractal image
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compression produces better reconstructed image than that of JPEG (Joint Photographic Expert
Group) technique. This we can see from the difference between images 17 and 18 in the following
figure. Original file size is 1036 bytes and it is compressed to an image of size is 996 bytes in 5
seconds.

Fig. 9.Original Image Fig. 10. Compressed Image

Fig. 11. Iteration 1 (start with any image) Fig. 12.Iteration 2

Fig. 13. Iteration 3 Fig. 14.Iteration 4
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Fig. 15.Iteration 5 Fig. 16.Iteration 6

Fig. 17.Iteration 7 Fig. 18.JPEG Image

Outstanding results of fractal image compression inspired researchers to apply this technique to
video encoding[26]. Although it is true that JPEG is the most widely used technique for the image
compression, there is no option but to use fractal image compression at least where very high
compression ratio is required. But it has a drawback of time consuming encoding. Fractal decoding
of images is based on the fixed point theorems [27]. We see the mathematical modeling in the
fractal image compression in the remaining part of the article.

Definition 4.1. Let (X, d, κ) be a digital metric space. Ti : X → X, i = 1, 2, · · · , n be the
contractions with the contraction factors λi, i = 1, 2, · · · , n. Let λ = max{λi, i = 1, 2, · · · , n}.
Then the set of contractions {Ti, i = 1, 2, · · · , n} with the contraction factor λ is called an iteration
function system (IFS).

First we discuss fractal image compression for binary images.

Definition 4.2. For a digital metric space (R2, d, κ) affine transformations are defined as the IFS
{Ti, i = 1, 2, · · · , n}, where

Ti

[
x
y

]
=

[
pi qi
ri si

] [
x
y

]
+

[
ti
ui

]
Here [

pi qi
ri si

]
amounts to scaling and rotation, and [

ti
ui

]
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represents the translation. We observe that Ti, i = 1, 2, · · · are contractions if and only if∣∣∣∣pi qi
ri si

∣∣∣∣ < 1

Let P(X) be the set of all non-empty compact subsets of the digital metric space (X, d, κ).

Definition 4.3. The Hausdorff distance between the two sets A,B in P(X) is defined by

H(A,B) = max
{
sup
x∈A

d(x,B), sup
y∈B

d(y,A)
}

where d(x,B) = infy∈B d(x, y) and d(y,A) = infx∈A d(y, x).

Let {Ti, i = 1, 2, · · · , n} be the IFS defined on the digital metric space (X, d, κ) with the contractive
factor λ. Define T : P(X) → P(X) by

TA =

n∪
i=1

TiA (4.1)

for all A ∈ P(X). Then T is a contraction on P(X) with respect to the Hausdorff matrix, that is

H(TA, TB) ≤ λH(A,B)

for all A,B ∈ P(X).

Remark 4.4. The union defined above in equation (4.1) is the assembly of the reduced copies of the
whole image.

The following theorem is the key result for the application in fractal image compression.

Theorem 4.5. [27] Consider the matrix space (P(X), H) and the mapping T : P(X) → P(X) defined
as in (4.1). Then the mapping T has a unique fixed point Z in P(X). Moreover, lim

n→∞
TnA = Z for

any A ∈ P(X).

Remark 4.6. The equation lim
n→∞

TnA = Z in the theorem 4.5 suggests that we can start with any

random block in the domain and successively apply the affine transformation on it to get the output
image.

Now we consider the inverse problem. Suppose the image Z, that is to be compressed, is the
fixed point of the affine transformation T . Then the aim is to construct the IFS so that, we get
lim

n→∞
TnA = Z.

We refer [20] to see that Barnsley theorem is useful in the inverse problem. Actually, the following
theorem, called collage theorem addresses the problem.

Theorem 4.7. [27] Let (X, d, κ) be a digital metric space and let A ∈ P(X). Given any ϵ ≥ 0. Select
an IFS {Ti, i = 1, 2, · · · , n} with the contraction factor 0 ≤ λ < 1, such that

H
(
A,

n∪
i=1

TiA
)
≤ ϵ

31



Dolhare and Nalawade; AJOMCOR, 25(1): 18-37, 2018

Then

H(A,Z) ≤ ϵ

1− λ

where Z = lim
n→∞

TnA.

Practically the collage theorem is applied as follows: Given any A ∈ P(X), draw an outline of A.
Cover it by ϵ close smaller copies of the outline. These copies are called collage. There is a unique
affine map Ti from the outline of A onto each of the collage. The collage theorem 4.7 states the
that more accurately the image A is covered by the collage, the more close is the image Z to the
image A.

Now let us consider the case of grayscale images. A greyscale image is one in which the value of
each pixel is a single sample representing only an amount of light, that is, it carries only intensity
information. Images of this sort, also known as black-and-white or monochrome. These images
are composed exclusively of shades of gray, varying from black at the weakest intensity to white at
the strongest. The set X of all the grayscale image can be represented by a real valued function
z = f : S2 → [a, b], where S2 ⊂ R2 is the support of the image,[a, b] ⊂ R is an interval representing
the gray levels in the image. This space becomes a complete metric space with the supremum metric
[28],

d(f, g) = sup |f − g|

and L2metric

d(f, g) =
{∫

S2

[f(x, y)− g(x, y)]2dxdy
} 1

2

for all f, g ∈ X.

Both fixed point theorem and collage theorem hold true for this space.

Theorem 4.8. [27] Let T : X → X be a contraction defined on the complete metric space (X, d).
Then there exists a unique fixed point Z ∈ X. Moreover, Z = lim

n→∞
Tnf for any f ∈ X.

Let f0 be the original image to be compressed. The aim is to find the IFS so that f0 = lim
n→∞

Tnf .

The collage theorem resolves this issue.

Theorem 4.9. [27] Let T : X → X be a contraction with contraction factor λ. Then

d(fo, f) ≤
1

1− λ
d(f0, T fo)

As the natural images are rarely self similar, the practical fractal coding is a block coding. Divide the
image into non-overlapping range blocks R1, R2, · · · , Rn. Then divide the image into overlapping
domain blocks D1, D2, · · · , Dm. Domain blocks are larger in size to make the mapping contractive.
Usually the domain block is chosen double the range block. The contraction is defined block wise
as

Tf =

n∪
i=1

Tif
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where Ti : f |Di → f |Ri is a contraction. We have

Tf =

n∪
i=1

Tf |Ri =

n∪
i=1

Tif |Di

Thus we see that fractal code is constructed by defining the IFS separately for each range block
Ri. Encoding procedure is to find IFS from domain Di to the range Ri, so that the domain block
is close to the original range block.
Observe that Ti is effectively three dimensional transformation since
1. It spatially shrinks the domain to range
2. It contracts the intensity of the domain block.
Let

Ti(x, y, z) = (Gi(x, y), Ii(z)) : Di × I → Ri × I,

where Gi is geometric part and Ii is an intensity part. Now the geometric part Gi is contracting and
rotating the domain block so as to fit to the range block. So it is a composition of two mappings, say,
hi : Di → Ri, a contraction and θi : Ri → Ri, a rotation. Thus the geometric part is Gi = θi ◦ hi.
The matrix form of Gi becomes

Gi

[
x
y

]
=

[
pi qi
ri si

] [
x−Dxi

y −Dyi

]
+

[
Rxi

Ryi

]
The domain Di transformed to the range block Ri under the geometric transformation not only
shrinks its shape but also increases its contrast. Let us denote the contrast or intensity of grayscale
caused by the geometric transformation Gi as gi(f) : [a, b] → [a, b]. The pixel intensity is taken
as the local average of those pixels from the domain block before the geometric mapping. Let the
pixel intensity be denoted by u. Thus

u(x, y) = gif |Di = g(f(G−1
i (x, y)))

for all (x, y) ∈ Ri. Further intensity mappings are now performed according to

mif : [a, b] → [a, b]

where mi consists of scaling and intensity shifting. Let

v : mi(u) = λiu(x, y) + ti

The total intensity transformation becomes

Ii(f) = mi ◦ gi(f) : [a, b] → [a, b]

Note again that both geometric and intensity mappings are contractions, so that we can use the
fixed point theorem. The IFS for the point (x, y) and intensity z in the domain block Di is defined
as

Ti

xy
z

 =

pi qi 0
ri si 0
0 0 λi

x−Dxi

y −Dyi

gi(z)

+

Rxi

Ryi

ti


where (pi, qi, ri, si, Dxi , Dyi , Rxi , Ryi) amounts to the geometric part and (λi, ti, gi) represents the
intensity part. We choose the parameters si and ti so that the the contraction map Ti takes a
domain block as close to range block as possible. In particular let

E =
1

MN

∑∑
(x,y)∈Ri

[λiu+ ti − f ]2
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where M × N is the size of the range block. From the calculus of several variables, the minimum
value of E is attained where the partial derivatives of E with respect to λi and ti become zero.
Finding these partial derivatives and equating them to zero we get two equations. Solving these
linear equations for λi and ti, we get

λi =
MN

∑∑
(x,y)∈Ri

fu−
(∑∑

(x,y)∈Ri
f
)(∑∑

(x,y)∈Ri
u
)

MN
∑∑

(x,y)∈Ri
u2 −

(∑∑
(x,y)∈Ri

u
)2

ti =
1

MN

( ∑∑
(x,y)∈Ri

f − λi

∑∑
(x,y)∈Ri

u
)

The IFS is described by the following five numbers:

1. θi - The index of symmetries,
2. Dxi - The x coordinate of the domain block Di,
3. Dyi - The y coordinate of the domain block Di,
4. λi - The contraction factor,
5. ti - The shift in the gray level.

Since each of the mapping is contractive, we can apply the fixed point theorem for decoding. Start
with any image f and apply T successively to compute Tf, T 2f, · · · until the sequence converges.
Normally we need to apply T 8 to 10 times.

Having considered some basic background of fractal image compression, and its technique in practical
applications, now we turn our attention to application of our fixed point theorem. As we know,
the researchers work towards either maximizing quality of the image at a fixed transmission rate
or minimize the transmission time for a given quality of the image. As an application, we try to
improve the image quality at a given rate of transmission. To achieve this goal, we replace the
constant λi in the contraction mapping by a non-linear contractive function.

Definition 4.10. Let T be a mapping on the metric space (X, d). If there exists function 0 ≤
|λ(x, y)| < 1 such that

d(Tf, Tg) ≤ λ(x, y)d(f, g)

for all f, g ∈ X, then the mapping T is said to be a contraction mapping and the function λ(x, y)
is called a contractive function.

Example 4.11. Consider the function ψ : (0,∞) → (0,∞) defined by

ψ(t) =


tet

(n+1)(1+et)
if, 1

n+1
< t ≤ 1

n
,

0 if, t = 0,

1 if, t > 1

(4.2)

The function satisfy the following:

1. ψ(t) non-decreasing on [0,∞),
2. lim

n→∞
ψn(t) = 0,

3. ψ(t) is a non-linear function.
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Let (X, d) be a metric space and suppose that T : X → X satisfy d(Tx, Ty) ≤ ψ(d(x, y)) where ψ
is as defined in (4.2). Then we get,

d(Tx, Ty) ≤ ψ(d(x, y))

= d(x, y)
ed(x,y)

(n+ 1)(1 + ed(x,y))

= λ(x, y)d(x, y)

where

λ(x, y) =
ed(x,y)

(n+ 1)(1 + ed(x+y))

Here

|λ(x, y)| =
∣∣ ed(x,y)

(n+ 1)(1 + ed(x+y))

∣∣ < 1

Hence λ(x, y) is a contractive function. By the theorem 3.1, T has a unique fixed point in X.

Now we consider the advantage of using a non-linear contractive functions. A cluster of planes
which are not parallel to the Z axis has the general form z = ax + by + c. Then we construct the
contractive functions by limiting the dynamic range of these planes to (−1, 1) with the following
mapping

λ(x, y, a, b, c) = ± 1

eax+by+c

a, b, c to be optimized. λ(x, y) takes positive values when the angle between a domain normal
direction and a range normal direction is less than π

2
, and negative values, if the angle is larger than

π
2
. The following figure shows a domain block that is mapped into a steeper range block under a

nonlinear contractive function.

Fig. 19. Transformation under non linear contractive function

The optimization objective function can be written as

E =
1

MN

∑∑
(x,y)∈Ri

[λi(x, y, pi, qi, ri, )u(x, y) + ti − f(x, y)]2

The peak signal-to-noise ratio (PSNR) is used to measure the difference between two images. The
PSNR is measured in decibels and defined as follows:

PSNR = 10 log10

{ B2

Mean Squared Error

}
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Here B is the largest signal amplitude. For the image of size N ×N the mean squared error is given
by

MSE =
1

N2

N∑
x=1

N∑
y=1

[f(x, y)− f̂(x, y)]2

where f and f̂ are original and reconstructed images respectively. As per the experiments conducted
for the nonlinear contractive function method and traditional method of fractal image compression,
we get the following table of observation. It is clear that the non linear fractal coding technique
gives a better reconstructed image.

Table 1. PSNR calculated for non linear contractive method and L2 metric method

Number of Iterations 1 2 3 4 5 6 7 8 9 10

PSNR (Nonlinear) 19.91 25.04 29.19 30.66 31.01 31.05 31.05 31.05 31.05 31.05
PSNR (L2 metric) 18.03 21.00 23.66 26.64 29.13 30.25 30.45 30.46 30.45 30.35

5 Conclusion

Purpose of this paper is to give a digital version of some important generalizations of Banach
contraction mapping principle. We have extended the Banach contraction mapping principle to
digital images by using a non-decreasing function. Also weakly uniformly strict contraction is
incorporated to establish another fixed point theorem. An attempt has been made to give an
application of our fixed point theorems to fractal image compression and improve the perceptual
quality of transformed digital image.
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